The Department of Earth Sciences is now looking for a highly-motivated candidate to fill a PhD position on the impact of microbial treatment on the weathering behaviour of rocks. Physical, chemical and biological weathering has a profound impact on the Earth’s landscape and on its building infrastructure. Rock and masonry are constantly damaged and disaggregated by chemical reactions, water infiltration and temperature changes. Strengthening efforts to protect and safeguard the world’s cultural and natural heritage is one of the United Nations’ Targets for Sustainable Cities and Communities in the 2030 Agenda for Sustainable Development. Fluids are a major driver of rock weathering: they trigger, among others, dissolution, precipitation, frost and salt weathering. The key to manipulating weathering lies in understanding and controlling fluid flow within the internal pore structure of rocks and thereby influencing the related pore-scale processes. While microbial organisms are generally known to alter rock surfaces, some actually display physiological capabilities that have beneficial effects on rock properties due to their production of bio-cement, gas and acids. Before we can harness these beneficial effects, we must first study how these organisms impact fluid flow at pore scale.
Plus d’informations :
[Website Utrecht University]